Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(3): 876-894, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38445960

RESUMO

IDH1mut gliomas produce high levels of D-2-hydroxyglutarate (D-2-HG), an oncometabolite capable of inhibiting α-ketoglutarate-dependent dioxygenases critical to a range of cellular functions involved in gliomagenesis. IDH1mut gliomas also exhibit slower growth rates and improved treatment sensitivity compared with their IDH1wt counterparts. This study explores the mechanism driving apparent reduced growth in IDH1mut gliomas. Specifically, we investigated the relationship between IDH1mut and the RNA N6-methyladenosine (m6A) demethylases FTO and ALKBH5, and their potential for therapeutic targeting. We investigated the role of D-2-HG and m6A in tumor proliferation/viability using glioma patient tumor samples, patient-derived gliomaspheres, and U87 cells, as well as with mouse intracranial IDH1wt gliomasphere xenografts. Methylation RNA immunoprecipitation sequencing (MeRIP-seq) RNA sequencing was used to identify m6A-enriched transcripts in IDH1mut glioma. We show that IDH1mut production of D-2-HG is capable of reducing glioma cell growth via inhibition of the m6A epitranscriptomic regulator, FTO, with resultant m6A hypermethylation of a set of mRNA transcripts. On the basis of unbiased MeRIP-seq epitranscriptomic profiling, we identify ATF5 as a hypermethylated, downregulated transcript that potentially contributes to increased apoptosis. We further demonstrate how targeting this pathway genetically and pharmacologically reduces the proliferative potential of malignant IDH1wt gliomas, both in vitro and in vivo. Our work provides evidence that selective inhibition of the m6A epitranscriptomic regulator FTO attenuates growth in IDH1wt glioma, recapitulating the clinically favorable growth phenotype seen in the IDH1mut subtype. SIGNIFICANCE: We show that IDH1mut-generated D-2-HG can reduce glioma growth via inhibition of the m6A demethylase, FTO. FTO inhibition represents a potential therapeutic target for IDH1wt gliomas and possibly in conjunction with IDH1mut inhibitors for the treatment of IDH1mut glioma. Future studies are necessary to demonstrate the role of ATF5 downregulation in the indolent phenotype of IDH1mut gliomas, as well as to identify other involved gene transcripts deregulated by m6A hypermethylation.


Assuntos
Adenina/análogos & derivados , Glioma , Glutaratos , Humanos , Animais , Camundongos , Glioma/tratamento farmacológico , RNA/metabolismo , RNA Mensageiro/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
2.
J Neurooncol ; 166(1): 129-142, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224404

RESUMO

BACKGROUND: Malignant glioma carries a poor prognosis despite current therapeutic modalities. Standard of care therapy consists of surgical resection, fractionated radiotherapy concurrently administered with temozolomide (TMZ), a DNA-alkylating chemotherapeutic agent, followed by adjuvant TMZ. O-6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme, removes alkylated lesions from tumor DNA, thereby promoting chemoresistance. MGMT promoter methylation status predicts responsiveness to TMZ; patients harboring unmethylated MGMT (~60% of glioblastoma) have a poorer prognosis with limited treatment benefits from TMZ. METHODS: Via lentiviral-mediated delivery into LN18 glioma cells, we employed deactivated Cas9-CRISPR technology to target the MGMT promoter and enhancer regions for methylation, as mediated by the catalytic domain of the methylation enzyme DNMT3A. Methylation patterns were examined at a clonal level in regions containing Differentially Methylation Regions (DMR1, DMR2) and the Methylation Specific PCR (MSP) region used for clinical assessment of MGMT methylation status. Correlative studies of genomic and transcriptomic effects of dCas9/CRISPR-based methylation were performed via Illumina 850K methylation array platform and bulk RNA-Seq analysis. RESULTS: We used the dCas9/DNMT3A catalytic domain to achieve targeted MGMT methylation at specific CpG clusters in the vicinity of promoter, enhancer, DMRs and MSP regions. Consequently, we observed MGMT downregulation and enhanced glioma chemosensitivity in survival assays in vitro, with minimal off-target effects. CONCLUSION: dCas9/CRISPR is a viable method of epigenetic editing, using the DNMT3A catalytic domain. This study provides initial proof-of-principle for CRISPR technology applications in malignant glioma, laying groundwork for subsequent translational studies, with implications for future epigenetic editing-based clinical applications.


Assuntos
Neoplasias Encefálicas , Glioma , Guanina , Humanos , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Dacarbazina/farmacologia , DNA/genética , DNA/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Guanina/análogos & derivados , O(6)-Metilguanina-DNA Metiltransferase/genética , Temozolomida/farmacologia
3.
Neurooncol Adv ; 5(1): vdad084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554221

RESUMO

Background: Alterations in tumor growth rate (TGR) in recurrent glioblastoma (rGBM) after treatment may be useful for identifying therapeutic activity. The aim of this study was to assess the impact of volumetric TGR alterations on overall survival (OS) in rGBM treated with chemotherapy with or without radiation therapy (RT). Methods: Sixty-one rGBM patients treated with chemotherapy with or without concomitant radiation therapy (RT) at 1st or 2nd recurrence were retrospectively examined. Pre- and post-treatment contrast enhancing volumes were computed. Patients were considered "responders" if they reached progression-free survival at 6 months (PFS6) and showed a decrease in TGR after treatment and "non-responders" if they didn't reach PFS6 or if TGR increased. Results: Stratification by PFS6 and based on TGR resulted in significant differences in OS both for all patients and for patients without RT (P < 0.05). A decrease of TGR (P = 0.009), smaller baseline tumor volume (P = 0.02), O6-methylguanine-DNA methyltransferase promoter methylation (P = 0.048) and fewer number of recurrences (P = 0.048) were significantly associated with longer OS after controlling for age, sex and concomitant RT. Conclusion: A decrease in TGR in patients with PFS6, along with smaller baseline tumor volume, were associated with a significantly longer OS in rGBM treated with chemotherapy with or without radiation. Importantly, all patients that exhibited PFS6 also showed a measurable decrease in TGR.

4.
Neurooncol Adv ; 5(1): vdad036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152809

RESUMO

Background: Lower-grade IDH mutant glioma patients frequently undergo malignant transformation (MT), with apparent worse prognosis. Many studies examine MT in mixed IDH status cohorts and define MT using imaging, not histopathology. Our study examines the timing, predictors, and prognostic implications of pathologically determined MT in a large, exclusively IDH mutant cohort. Methods: We identified 193 IDH mutant lower-grade glioma patients at UCLA who received multiple surgeries. We examined the outcomes of pathologically determined MT patients. Results: Time to MT is longer in grade 2 oligodendroglioma (G2 Oligo) than in grade 2 astrocytoma (G2 Astro) (HR = 0.46, P = .0007). The grade 3 astrocytoma (G3 Astro) to grade 4 astrocytoma (G4 Astro) interval is shorter in stepwise MT (G2 to G3 to G4 Astro) patients than in initial G3 Astro patients (P = .03). Novel contrast enhancement had 65% positive predictivity, 67% negative predictivity, 75% sensitivity, and 55% specificity in indicating pathologically defined MT. In G2 Astro, initial gross total resection delayed MT (HR = 0.50, P = .02) and predicted better overall survival (OS) (HR = 0.34, P = .009). In G2 Oligo, spontaneous MT occurred earlier than treated MT (HR = 11.43, P = .0002), but treatment did not predict improved OS (P = .8). MT patients (n = 126) exhibited worse OS than non-MT patients (n = 67) in All (HR = 2.54, P = .0009) and G2 Astro (HR = 4.26, P = .02). Conclusion: Our study expands the understanding of MT to improve IDH mutant lower-grade glioma management.

5.
Neurooncol Adv ; 5(1): vdad028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37128507

RESUMO

Background: Tumor surveillance of isocitrate dehydrogenase (IDH) mutant gliomas is accomplished via serial contrast MRI. When new contrast enhancement (CEnew) is detected during postsurgical surveillance, clinicians must assess whether CEnew indicates pseudoprogression (PsP) or tumor progression (TP). PsP has been better studied in IDH wild-type glioblastoma but has not been well characterized in IDH mutant gliomas. We conducted a retrospective study evaluating the incidence, predictors, natural history, and survival of PsP patients in a large cohort of IDH mutant glioma patients treated at a single institution. Methods: We identified 587 IDH mutant glioma patients treated at UCLA. We directly inspected MRI images and radiology reports to identify CEnew and categorized CEnew into TP or PsP using MRI or histopathology. Results: Fifty-six percent of patients developed CEnew (326/587); of these, 92/326 patients (28% of CEnew; 16% of all) developed PsP and 179/326 (55%) developed TP. All PsP patients had prior radiation, chemotherapy, or chemoradiotherapy. PsP was associated with longer overall survival (OS) versus TP patients and similar OS versus no CEnew. PsP differs from TP based on earlier time of onset (median 5.8 vs 17.4 months from treatment, P < .0001) and MRI features that include punctate enhancement and enhancement location. Conclusion: PsP patients represented 28% of CEnew patients and 16% of all patients; PsP patients demonstrated superior outcomes to TP patients, and equivalent survival to patients without CEnew. PsP persists for <1 year, occurs after treatment, and differs from TP based on time of onset and radiographic features. Poor outcomes after CEnew are driven by TP.

6.
Blood ; 141(11): 1322-1336, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36399711

RESUMO

Venous thromboembolism (VTE) is a life-threating condition that is common in patients with adult-type diffuse gliomas, yet thromboprophylaxis is controversial because of possible intracerebral hemorrhage. Effective VTE prediction models exist for other cancers, but not glioma. Our objective was to develop a VTE prediction tool to improve glioma patient care, incorporating clinical, blood-based, histologic, and molecular markers. We analyzed preoperative arterial blood, tumor tissue, and clinical-pathologic data (including next-generation sequencing data) from 258 patients with newly diagnosed World Health Organization (WHO) grade 2 to 4 adult-type diffuse gliomas. Forty-six (17.8%) experienced VTE. Tumor expression of tissue factor (TF) and podoplanin (PDPN) each positively correlated with VTE, although only circulating TF and D-dimers, not circulating PDPN, correlated with VTE risk. Gliomas with mutations in isocitrate dehydrogenase 1 (IDH1) or IDH2 (IDHmut) caused fewer VTEs; multivariable analysis suggested that this is due to IDHmut suppression of TF, not PDPN. In a predictive time-to-event model, the following predicted increased VTE risk in newly diagnosed patients with glioma: (1) history of VTE; (2) hypertension; (3) asthma; (4) white blood cell count; (5) WHO tumor grade; (6) patient age; and (7) body mass index. Conversely, IDHmut, hypothyroidism, and MGMT promoter methylation predicted reduced VTE risk. These 10 variables were used to create a web-based VTE prediction tool that was validated in 2 separate cohorts of patients with adult-type diffuse glioma from other institutions. This study extends our understanding of the VTE landscape in these tumors and provides evidence-based guidance for clinicians to mitigate VTE risk in patients with glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Tromboembolia Venosa , Humanos , Adulto , Tromboembolia Venosa/genética , Tromboembolia Venosa/diagnóstico , Anticoagulantes/uso terapêutico , Glioma/complicações , Glioma/genética , Glioma/tratamento farmacológico , Biomarcadores , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Isocitrato Desidrogenase/genética , Mutação
7.
Neurooncol Adv ; 4(1): vdac124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033919

RESUMO

Background: Inhibition of the isocitrate dehydrogenase (IDH)-mutant enzyme is a novel therapeutic target in IDH-mutant gliomas. Imaging biomarkers of IDH inhibitor treatment efficacy in human IDH-mutant gliomas are largely unknown. This study investigated early volumetric, perfusion, and diffusion MRI changes in IDH1-mutant gliomas during IDH inhibitor treatment. Methods: Twenty-nine IDH1-mutant glioma patients who received IDH inhibitor and obtained anatomical, perfusion, and diffusion MRI pretreatment at 3-6 weeks (n = 23) and/or 2-4 months (n = 14) of treatment were retrospectively studied. Normalized relative cerebral blood volume (nrCBV), apparent diffusion coefficient (ADC), and fluid-attenuated inversion recovery (FLAIR) hyperintensity volume were analyzed. Results: After 3-6 weeks of treatment, nrCBV was significantly increased (P = .004; mean %change = 24.15%) but not FLAIR volume (P = .23; mean %change = 11.05%) or ADC (P = .52; mean %change = -1.77%). Associations between shorter progression-free survival (PFS) with posttreatment nrCBV > 1.55 (P = .05; median PFS, 240 vs 55 days) and increased FLAIR volume > 4 cm3 (P = .06; 227 vs 29 days) trended toward significance. After 2-4 months, nrCBV, FLAIR volume, and ADC were not significantly different from baseline, but an nrCBV increase > 0% (P = .002; 1121 vs 257 days), posttreatment nrCBV > 1.8 (P = .01; 1121 vs. 270 days), posttreatment ADC < 1.15 µm2/ms (P = .02; 421 vs 215 days), median nrCBV/ADC ratio increase > 0% (P = .02; 1121 vs 270 days), and FLAIR volume change > 4 cm3 (P = .03; 421 vs 226.5 days) were associated with shorter PFS. Conclusions: Increased nrCBV at 3-6 weeks of treatment may reflect transient therapeutic and/or tumor growth changes, whereas nrCBV, ADC, and FLAIR volume changes occurring at 2-4 months of treatment may more accurately reflect antitumor response to IDH inhibition.

8.
Neurooncol Adv ; 4(1): vdac030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386566

RESUMO

Background: Patients with isocitrate dehydrogenase (IDH) mutant gliomas have been associated with longer survival time than those that are IDH wild-type. Previous studies have shown the prognostic value of O 6 -methylguanine-DNA methyltransferase (MGMT) promoter methylation for glioblastoma multiforme (GBM), which are predominantly IDH wild-type. Little is known of the prognostic value of MGMT methylation status for IDH mutant gliomas. Methods: We retrospectively identified IDH mutant gliomas patients between 2011 and 2020 that were tested for MGMT promoter methylation. We generated Kaplan-Meier estimator curves and performed Cox proportional hazard models for overall survival (OS) and progression-free survival (PFS) to compare the outcomes of MGMT promoter methylated versus MGMT unmethylated patients. Results: Of 419 IDH mutant gliomas with MGMT promoter methylation testing, we identified 54 GBMs, 223 astrocytomas, and 142 oligodendrogliomas. 62.3% patients had MGMT methylated tumors while 37.7% were MGMT unmethylated. On Kaplan-Meier analysis, median OS for all MGMT methylated patients was 17.7 years and 14.6 years for unmethylated patients. Median PFS for all MGMT methylated patients was 7.0 years and for unmethylated patients 5.2 years. After univariate subgroup analysis, MGMT methylation is only prognostic for OS and PFS in GBM, and for OS in anaplastic oligodendroglioma and anaplastic oligodendroglioma for OS. In multivariate analysis, MGMT unmethylated GBM patients carry a higher risk of death (HR 7.72, 95% CI 2.10-28.33) and recurrence (HR 3.85, 95% CI 1.35-10.96). Conclusions: MGMT promoter methylation is associated with better OS and PFS for IDH mutant GBM. MGMT promoter methylation testing for other IDH mutant glioma subtypes may not provide additional information on prognostication.

9.
Neurooncol Adv ; 2(1): vdaa009, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32118206

RESUMO

BACKGROUND: Targeted next-generation sequencing (NGS) is frequently obtained at the University of California, Los Angeles (UCLA) for clinical characterization of CNS tumors. In this study, we describe the diagnostic reliability of the Foundation Medicine (FM) targeted NGS platform and its ability to explore and identify tumor characteristics of prognostic significance in gliomas. METHODS: Neuro-oncology patients seen at UCLA who have received FM testing between August 2012 and March 2019 were included in this study, and all mutations from FM test reports were recorded. Initial tumor diagnoses and diagnostic markers found via standard clinical methods were obtained from pathology reports. With overall and progression-free survival data, elastic net regularized Cox regression and Cox proportional hazards models were used to determine whether any mutations of unknown significance detected by FM could predict patient outcome in glioblastoma (GBM). RESULTS: Six hundred and three samples tested by FM from 565 distinct patients were identified. Concordance of diagnostic markers was high between standard clinical testing methods and FM. Oligodendroglial markers detected via FM were highly correlated with 1p19q codeletion in IDH mutated gliomas. FM testing of multiple tumor samples from the same patient demonstrated temporal and spatial mutational heterogeneity. Mutations in BCORL1, ERBB4, and PALB2, which are mutations of unknown significance in GBM, were shown to be statistically significant in predicting patient outcome. CONCLUSIONS: In our large cohort, we found that targeted NGS can both reliably and efficiently detect important diagnostic markers in CNS tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA